

Journal of Alloys and Compounds 300–301 (2000) 389–394

www.elsevier.com/locate/jallcom

Optical transitions of Ho^{3+} in YAG

M. Malinowski^{a, *}, Z. Frukacz^a, M. Szuflińska^a, A. Wnuk^{a,b}, M. Kaczkan^a

a *Institute of Microelectronics and Optoelectronics PW*, *ul*. *Koszykowa* 75, ⁰⁰-⁶⁶² *Warsaw*, *Poland* b *Institute of Electronic Materials Technology*, *ul*. *Wolczynska ´ ´* 133, ⁰¹-⁹¹⁹ *Warsaw*, *Poland*

Abstract

We report the optical properties of Y₃Al₅O₁₂ (YAG) crystal doped with Ho³⁺ ions. Absorption, emission, and lifetime measurements
have been performed and discussed using Judd–Ofelt theory. Visible emissions from th the experimental lifetimes for these levels have been compared with those obtained theoretically by using Judd–Ofelt approach. Upconversion processes for achieving blue and green fluorescence under one-color red and IR have been investigated. \oslash 2000 Elsevier Science S.A. All rights reserved.

Keywords: Holmium; YAG–Ho³⁺; Luminescence

1. Introduction result of $Yb^{3+} \rightarrow Ho^{3+}$ energy transfer. Very recently, the Ho^{3+} -ZBLAN fiber upconversion laser has been ex-
It is well known that Ho^{3+} ions can produce laser amined in detail by Funk et al. [1 emission in the 2 and 2.9 μ m ranges [1–4] arising from These reported results stimulated our spectroscopic
transitions between Stark levels of the ⁵I₇ and ⁵I₆ states, investigation of Ho³⁺ in various hosts fo LiYF₄ [7] and YAlO₃ [8] have been demonstrated to lase character of the holmium optical transitions in YAG were in the green part of the spectrum between transitions from performed [16] and the measurements of upconve the excited ${}^{5}S_{2}$ state to the ground state [1,6]. The total energy transfer between Ho³⁺ ions in YAG excited in the number of reported laser channels of Ho³⁺ in insulating IR region have been reported [17]. For crystals is 14 (from 0.55 to 3.9 μ m). YAG [18] Judd–Ofelt [19,20] parameters, were calculated

The first upconversion laser described by Johnson and on a basis of limited number of transitions. Guggenheim in 1971 [9] was BaY_2F_8 crystal doped by While emission properties of this system have been $Ho^{3+} + Yb^{3+}$ ions and pumped by a filtered flash lamp. extensively studied in the near IR range, much less is Allain et al. [10] demonstrated continuous wave (cw) green known about the UV and visible emissions and their upconversion lasing in Ho³⁺ doped fluorozirconate glass dynamics require more detailed investigation. The pur Thrash et al. [11] reported cw upconversion green laser YAG crystal to better understand the behavior of rare-earth operation in Yb³⁺ codoped KYF₄-Ho³⁺ crystals as the ion in this host and to predict its short wavel

rise to transitions at various wavelengths from infrared recently they were determined in the wide energy range (IR) to ultraviolet (UV) region. Crystals of CaF₂ [6], [15]. Polarized spectroscopy investigations of the dipole LiYF₄ [7] and YAIO₃ [8] have been demonstrated to lase character of the holmium optical transitions in

emission properties. We performed optical absorption and *Corresponding author. Tel.: +48-22-660-7783; fax: +48-22-628-
*Corresponding author. Tel.: +48-22-660-7783; fax: +48-22-628-8740.

E-*mail address*: m.malinowski@imio.pw.edu.pl (M. Malinowski) properties of this material.

Fig. 1. Visible absorption spectrum of 2 at.% $\text{Ho}^{3+}-\text{YAG}$ crystal at room temperature.

Institute of Electronic Materials Technology (ITME) in ground absorption of the host crystal begins to increase Warsaw. The experimental apparatus used to measure the and it grows rapidly at about 220 nm. sample absorption, luminescence and excitation spectra has Emission of the crystals was recorded between 300 nm

2. Results and discussion been described previously [21]. The room temperature absorption spectra in the $300-2300$ nm range of 2% Ho³⁺ 2.1. *Absorption and emission spectra* doped YAG are presented in Figs. 1 and 2. The figures Single crystals of YAG doped by 0.1, 0.3, 2 and 5 at.%

Single crystals of YAG doped by 0.1, 0.3, 2 and 5 at.%

IR range, corresponding to $4f^{10} \rightarrow 4f^{10}$ transitions of tri-

of Ho³⁺ were grown by the Czochralski m

Fig. 2. Infrared absorption spectrum of 2 at.% $Ho^{3+}-YAG$ crystal at room temperature.

Fig. 3. Room temperature visible emission spectrum of $Ho³⁺ - YAG$ crystal.

part of the emission spectrum is shown in the same rized in Fig. 5. intensity scale. After UV and blue excitation, fluorescence
is dominated by the transitions from the excited ${}^{3}D_{3}$ state
and ${}^{5}S_{2}$ state, respectively. Weak emission originating from
the ${}^{5}F_{5}$ multiplet, po

and 2 μ m after pulsed excitation at various wavelength. IR spectrum consists of the emission band around 1 μ m
Fig. 3 illustrates the room temperature emission spectrum resulting from the ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ transit

Fig. 4. Part of the IR emission spectrum of $Ho^{3+}-YAG$ measured at 300 K.

result of the Judd-Ofelt theory is that the oscillator strength $f_{\text{calc.}}$ of an electric dipole transition between rare-
earth ion multiplets $(J \rightarrow J')$ can be expressed by
the electric dipole transition probabilities $A(aJ, bJ')$ for

Table 1 Measured and calculated oscillator strengths for Ho³⁺ ion in Y₃Al₅O₁₂³

$$
f_{\text{calc.}}(aJ, bJ') = \frac{8\pi^2 m\nu}{3h(2J+1)n^2} \chi \sum_{t=2,4,6} \Omega_t |\langle 4f^n|a, J || U^{(t)} || 4f^n |b, J' |\rangle|^2
$$
\n(1)

where *h* is Planck's constant, *J* is the angular momentum of the initial level, $\chi = n(n^2 + 2)^2/9$ is a local field correction factor, $\langle a||U^{(t)}||b\rangle$ are the doubly reduced matrix elements and Ω , are empirically determined parameters. The experimental oscillator strength f_{exp} for an absorption transition is defined as

$$
f_{\text{exp}} = 4\pi\epsilon_0 \frac{mc^2}{N\pi e^2} \int \sigma(\nu) d\nu
$$
 (2)

where *m* and *e* are the electron mass and charge, respectively, c is the light velocity, ν is the optical frequency and $\sigma(\nu)$ is the absorption cross section.

From the least-square fit of measured $(f_{exp.})$ and calculated (f_{calc}) oscillator strengths the three intensity Ω parameters were evaluated. In performing the calculations the reduced matrix elements were taken from [23]. Table 1 shows the average wavelengths for the analyzed transitions together with the measured and calculated oscillator strengths for all the transitions observed in the absorption Fig. 5. Energy level scheme of Ho³⁺ ion, observed emission transitions found to be $\Omega_2 = 0.04 \times 10^{-20}$ cm², $\Omega_4 = 2.67 \times 10^{-20}$ cm² are indicated by arrows. 221.89 \times 10⁻²⁰ cm². A measure of the quality of the fit can be evaluated from the RMS deviation between the measured and calculated oscillator strengths values. The
RMS deviation of 8.9×10^{-7} is comparable to values
the details of the Judd–Ofelt theory, its precision and draw found by applying Judd–Ofelt theory to Ho³⁺ io backs have been extensively analyzed elsewhere [22] we systems [24]. However, Table 1 presents big difference
have presented here only the essential results. The central between f_{exp} and f_{calc} for ${}^{5}I_{8} \rightarrow {}^{5}$ the electric dipole transition probabilities $A(aJ, bJ')$ for

^a RMS dev=8.9 \times 10⁻⁷.

Calculated radiative transition probabilities, lifetimes and branching ratios $\frac{1}{\pi}$ using the equation for Ho³⁺ ion in YAG

Transition	A_{ij} (s ⁻¹)	τ_{R} (ms)	$\beta_{\text{calc.}}$	A(aJ, bJ')
${}^5F_4 \rightarrow {}^5S_2$ $\begin{array}{c}\n\rightarrow^5F_5\\ \rightarrow^5I_4\\ \rightarrow^5I_5\\ \rightarrow^5I_6\\ \rightarrow^5I_7\n\end{array}$	≈ 0.00 5.22 58.66		≈ 0.00 0.00042 0.0047	$=\frac{64\pi^4e^2v^3}{3h(2J+1)c^3}\chi\sum_{t=2,4,6}\Omega_t \langle 4f^n a,J U^{(t)} 4f^n b,J' \rangle ^2$
	376.37 781.05		0.0302 0.0627	(3)
	1128.83		0.0907	
\rightarrow ⁵ I _s	10094.11	0.0804	0.8112	Calculated radiative transition probabilities A from the
$\begin{array}{c} {^{5}S_{2}}\rightarrow{^{5}F_{5}}\\ \quad\rightarrow{^{5}I_{4}}\\ \quad\rightarrow{^{5}I_{5}}\\ \quad\rightarrow{^{5}I_{6}}\\ \quad\rightarrow{^{5}I_{6}}\\ \quad\rightarrow{^{5}I_{7}} \end{array}$ \rightarrow ⁵ I_s	0.72 60.92 58.57 255.29 1500.41 2036.18	0.256	0.00018 0.0156 0.0149 0.0653 0.384 0.521	excited states together with the resulting branching ratios $\beta_{\text{calc.}}$ are given in Table 2. Radiative lifetimes of the ${}^{3}D_{3}$, ${}^{5}S_{2}$, ${}^{5}I_{6}$ and ${}^{5}I_{7}$ were calculated to be 131 μ s, 256 μ s, 1.36 ms, and 24 ms, respectively.
${}^5F_5 \rightarrow {}^5I_4$ \rightarrow ⁵ I ₅ \rightarrow ⁵ I ₆ \rightarrow ⁵ I ₇ \rightarrow ⁵ I ₈	0.14 21.18 307.33 1450.51		0.0000175 0.0026 0.0381 0.1798	2.3. Fluorescence dynamics
	6285.29	0.124	0.7794	Fig. 6 shows the decay profile of the ${}^{5}S_2$ level measured
$\begin{array}{c} \n ^{5}\mathrm{I}_{4} \rightarrow ^{5}\mathrm{I}_{5} \\ \rightarrow ^{5}\mathrm{I}_{6} \\ \rightarrow ^{5}\mathrm{I}_{7}\n \end{array}$ \rightarrow ⁵ I _s	11.31 96.21 124.88 6.38	4.18	0.0474 0.4029 0.5229 0.0267	at 15 K. The fluorescence lifetime was determined to be of 4.5 μ s which is, as could be seen from Table 3, much shorter than the radiative lifetime and the ${}^{5}S_{2}$ lifetimes in other holmium activated materials, suggesting its predomi-
	18.91		0.0349	nantly nonradiative character. This is consistent with the
$\begin{array}{c} \n^{5}I_{5} \rightarrow \n^{5}I_{6} \\ \rightarrow \n^{5}I_{7} \\ \rightarrow \n^{5}I_{8}\n\end{array}$	304.72 216.99	1.85	0.5636 0.4014	small energy gap of 2665 cm^{-1} to the next lower lying level and high effective phonon energy in YAG.
${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ $\rightarrow {}^{5}I_{8}$	66.10 668.93	1.36	0.0899 0.91	The ${}^{3}D_3$, and ${}^{5}F_5$ fluorescence decays in 0.1% Ho ³⁺ doped YAG were found to be non-exponential, late time
${}^5I_7 \rightarrow {}^5I_8$	296.95	24.40	1.00	part of decays yields lifetimes of 2.7 and $0.3 \mu s$, respec-

Table 2 emission between *J* manifolds of Ho³⁺ were calculated

$$
A(aJ, bJ') = \frac{64\pi^4 e^2 \nu^3}{3h(2J+1)c^3} \chi \sum_{t=2,4,6} \Omega_t |\langle 4f^n | a, J || U^{(t)} || 4f^n | b, J' ||^2
$$
\n(3)

The ${}^{3}D_3$, and ${}^{5}F_5$ fluorescence decays in 0.1% Ho³⁺ doped YAG were found to be non-exponential, late time part of decays yields lifetimes of 2.7 and $0.3 \mu s$, respectively.

Fig. 6. Green fluorescence decay at 15 K in Ho^{3+} –YAG.

Material	${}^{5}S$, lifetime (μ s)	[8] A.A. Kaminskii, V.M. Garmosh, G.A. Ermakov, V.A. Akkerman, A.A. Filmonov, K. Kurbarov, Izv. Akad. Nauk SSSR, Ser. Neorg.
$Y_3Al_5O_{12} - 0.1\%$ Ho ³⁺	4.5 [this work]	Mater. 22 (1986) 1576.
	4.7 [14]	[9] L.F. Johnson, H. Guggenheim, Appl. Phys. Lett. 19 (1971) 44.
Gd, Ga _s O ₁₂ -Ho ³⁺	63 [25]	[10] J.Y. Allain, M. Monerie, H. Poignant, Electron. Lett. 26 (1990) 261.
ZBLAN glass	171 [24]	[11] R.J. Thrash, R.H. Jarman, B.H.T. Chai, A. Pham, in: Topical
YAlO ₃ -0.1% Ho ³⁺	83 [26]	Meeting on Compact Blue-Green Lasers, February 10–14, 1994,
$LiYF_{4} - 0.2\%$ Ho ³⁺	131.2 [27]	Salt Lake City, CFA5-1/73, 1994.
LaF ₃ -0.5% Ho ³⁺	700 [28]	[12] D.S. Funk, J.G. Eden, IEEE J. Sel. Top. O.E. 1 (1995) 784.
$CaF_{2} - 1\%$ Ho ³⁺	1030 [29]	[13] D.S. Funk, S.B. Stevens, S.S. Wu, J.G. Eden, IEEE J.O.E. 32 (1996)
LiNbO ₂	14 [30]	638.

The spectroscopic properties of Ho^{3+} ion in $\text{Y}_3\text{Al}_5\text{O}_{12}$

crystals were studied and analyzed. Absorption spectra

have been obtained leading to the determination of Judd-

[17] L.B. Shaw, R.S. Chang, N. D Ofelt intensity parameters and radiative transition prob- 272. abilities. Because of the high effective phonon energy of [19] B.R. Judd, Phys. Rev. 127 (1962) 750.
the host matrix of about 860 cm⁻¹ holmium ion fluores [20] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511. the host matrix of about 860 cm⁻¹, holmium ion fluores-

cence in YAG is strongly affected by nonradiative decay.

Visible, green Ho³⁺ fluorescence presents much shorter (22) A.A. Kaminskii, Crystalline Lasers, CRC Pr lifetime to this of holmium in other oxide crystals. [23] W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Energy Level

- [1] L.F. Johnson, H.G. Guggenheim, T.C. Rich, F.W. Ostermayer, J. Mater. 3 (1994) 25. Appl. Phys. 43 (1972) 1125. [26] M. Malinowski, R. Piramidowicz, Z. Frukacz, G. Chadeyron, R.
-
- [3] A.A. Kaminskii, T.I. Butaeva, A.O. Ivanov, T.V. Mochalov, A.G. [27] L. Gomes, L.C. Corrol, L.V.G. Tarelho, I.M. Ranieri, Phys. Rev. B Petrosyan, G.I. Rogov, V.A. Fedorov, Sov. Tech. Phys. Lett. 2 54 (1996) 3825. (1976) 308. [28] B.R. Reddy, S. Nash-Stevenson, P. Venkateswarlu, J. Opt. Soc. Am.
- [4] A.A. Kaminskii,V.A. Fedorov, S.E. Sarkisov, J. Bohm, P. Reiche, D. B 11 (1994) 923. Scultze, Ohys. Stat. Solidi (a) 53 (1979) K219. [29] S.R. Bullock, B.R. Reddy, P. Venkateswarlu, S. Nash-Stevenson, J.
- [5] G.H. Dieke, H.M. Crosswhite, Appl. Opt. 2 (1963) 675. Opt. Soc. Am. B 14 (1997) 553.
- Lett. 1 (1965) 3. Condens Matter 8 (1996) 5781.
- Table 3 **[7] I.G. Podkolzina, A.M. Tkaczuk, V.A. Fedorov, P.P. Feofilov, Opt.** $\frac{1}{2}$ Spektroskopiya 40 (1976) 196.
 $\frac{1}{2}$ Spektroskopiya 40 (1976) 196.
 $\frac{1}{2}$ Spektroskopiya 40 (1976) 196.

[8] A.A. Kaminskii, V.M. Garmosh, G.A. Ermakov, V.A. Akkerman,
	- A.A. Filmonov, K. Kurbarov, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater. 22 (1986) 1576.
	- [9] L.F. Johnson, H. Guggenheim, Appl. Phys. Lett. 19 (1971) 44.
	- [10] J.Y. Allain, M. Monerie, H. Poignant, Electron. Lett. 26 (1990) 261.
	- [11] R.J. Thrash, R.H. Jarman, B.H.T. Chai, A. Pham, in: Topical
	-
	-
- [14] M.K. Ashurov, Yu.K. Voronko, E.W. Zarikov, A.A. Kaminskii, V.V. Osiko, A.A. Sobol, M.I. Timoshechkin, W.A. Fedorov, A.A. Szabal-**3. Conclusions** tai, Neorg. Mat. 15 (1979) 1250.
	- [15] J.B. Gruber, M.J. Hills, M.D. Seltzer, S.B. Stevens, C.A. Morrison,
	-
	-
	- [18] B.M. Antipienko, Yu.W. Tomasziewicz, Optik. Spektrosk. 44 (1978)
	-
	-
	-
	-
	- Structure and Transition Probabilities of the Trivalent Lanthanides in Laf₃, Argonne National Laboratory, Argonne, IL, 1975.
- **References** [24] K. Tanimura, M.D. Shinn, W.A. Sibley, M.G. Drexhage, R.N. **Brown**, Phys. Rev. B 30 (1984) 2429.
	- [25] A. Brenier, L.C. Courrol, C. Pedrini, C. Madej, G. Boulon, Opt.
- [2] D.W. Hart, M. Jani, N.P. Barnes, Optics Lett. 21 (1996) 728. Mahiou, M.F. Joubert, Optical Mater. 12 (1999) 409.
	-
	-
	-
- [6] Yu.K. Voronko, A.A. Kaminskii, V.V. Osiko, A.M. Prokhorov, JETP [30] A. Lorenzo, L.E. Baussa, J.A. Sanz Garcia, J. Garcia Sole, J. Phys.: